Генезис и становление теоретического знания в античной культуре
Применение образцов теоретического рассуждения к накопленным на этапе пред науки знаниям математики постепенно выводило ее на уровень теоретическою познания. Уже в истоках развития античной философии были предприняты попытки систематизировать математические знания, полученные в древних цивилизациях, и применить к ним процедуру доказательства. Так, Фалесу, одному из ранних древнегреческих философов, приписывается доказательство теоремы о равенстве углов основания равнобедренного треугольника (в качестве факта это знание было получено еще в древнеегипетской и вавилонской математике, но оно не доказывалось в качестве теоремы). Ученик Фалеса Анаксимандр составил систематический очерк геометрических знаний, что также способствовало выявлению накопленных рецептов решения задач, которые следовало обосновывать и доказывать в качестве теорем.
Важнейшей вехой на пути создания математики как теоретической науки были работы пифагорейской школы. Ею была создана картина мира, которая хотя и включала мифологические элементы, но по основным своим компонентам была уже философско-рациональным , образом мироздания. В основе этой картины лежал принцип: началом всего является число. Пифагорейцы считали числовые отношения ключом к пониманию мироустройства. И это создавало особые пред-it посылки для возникновения теоретического уровня математики. Задачей становилось изучение чисел и их отношений не просто как моделей тех или иных практических ситуаций, а самих по себе, безотносительно к практическому применению. Ведь познание свойств и отношений чисел теперь представало как познание начал и гармонии космоса. Числа представали как особые объекты, которые нужно постигать разумом, изучать их свойства и связи, а затем уже, исходя из знаний об этих свойствах и связях, объяснить наблюдаемые явления. Именно эта установка характеризует переход от чисто эмпирического познания количественных отношений (познания, привязанного к наличному опыту) к теоретическому исследованию, которое, оперируя абстракциями и создавая на основе ранее полученных абстракций новые, осуществляет прорыв к новым формам опыта, открывая неизвестные ранее вещи, их свойства и отношения.
В пифагорейской математике, наряду с доказательством ряда теорем, наиболее известной из которых является знаменитая теорема Пифагора, были осуществлены важные шаги к соединению теоретического исследования свойств геометрических фигур со свойствами чисел. Связи между этими двумя областями возникающей математики были двухсторонними. Пифагорейцы стремились не только использовать числовые отношения для характеристики свойств геометрических фигур, но и применять к исследованию совокупностей чисел геометрические образы. Так, число «10», которое рассматривалось как совершенное число, завершающее десятки натурального ряда, соотносилось с треугольником, основной фигурой, к которой при доказательстве теорем стремились свести другие геометрические фигуры. Соотношение числа «10» и равностороннего треугольника изображались следующей схемой:
I
I I
I I I
I I I I
Здесь первый ряд соответствует «1», второй — «2», третий — числу «3», четвертый — числу «4» а сумма их дает число «10» (1+2+3+4=10).
Нужно сказать, что связь геометрии и теории чисел обусловила постановку перспективных проблем, которые стимулировали развитие математики и привели к ряду важных открытий. Так, уже в античной математике при решении задачи числового выражения отношения гипотенузы к катетам были открыты иррациональные числа. Исследование «фигурных чисел», продолжающее пифагорейскую традицию, также получило развитие в последующей истории математики.
Разработка теоретических знаний математики проводилась в античную эпоху в тесной связи с философией и в рамках философских систем. Практически все крупные философы Античности — Демокрит, Платон, Аристотель и другие — уделяли огромное внимание математическим проблемам. Они придали идеям пифагорейцев, отягощенным многими мистико-мифологическими наслоениями, более строгую, рациональную форму. И Платон, и Аристотель, хотя и в разных версиях, отстаивали идею, что мир построен на математических принципах, что в основе мироздания лежит математический план. Эти представления стимулировали как развитие собственно математики, так и ее применение в различных областях изучения окружающего мира. В античную эпоху уже была сформулирована идея о том, что язык математики должен служить пониманию и описанию мира. Как подчеркивал Платон, «Демиург (Бог) постоянно геометризирует», т.е. геометрические образцы выступают основой для постижения космоса. Развитие теоретических знаний математики в античной культуре достойно завершилось созданием первого образца научной теории — евклидовой геометрии. В принципе, ее построение, объединившее в целостную систему отдельные блоки геометрических задач, решаемых в форме доказательства теорем, знаменовано превращение математики в особую, самостоятельную науку.
Вместе с тем в Античности были получены многочисленные приложения математических знаний к описаниям природных объектов и процессов. Прежде всего, это касается астрономии, где были осуществлены вычисления положения планет, предсказания солнечных и лунных затмений, предприняты смелые попытки вычислить размеры Земли, Луны, Солнца и расстояния между ними (Аристарх Самосский, Эратосфен, Птолемей). В античной астрономии были созданы две конкурирующие концепции строения мира: гелиоцентрические представления Аристарха Самосского (предвосхитившие последующие открытия Коперника) и геоцентрическая система Гиппарха и Птолемея. И если идея Аристарха Самосского, предполагавшая круговые движения планет по орбитам вокруг Солнца, столкнулась с трудностями при объяснении наблюдаемых перемещений планет на небесном своде, то система Птолемея, с ее представлениями об эпициклах, давала весьма точные математические предсказания наблюдаемых положений планет. Луны и Солнца. Основная книга Птолемея «Математическое построение» была переведена на арабский язык под названием «Аль-магисте» (великое) и затем вернулась в Европу как «Альмагест», став господствующим трактатом средневековой астрономии на протяжении четырнадцати веков.